

Promote λ to slowly varying classical field $\lambda(\bar{\chi}, t) : \mathbb{R}^{d+1} \to M$ Compactify IRd+1 to Sd+1. $S_{eff} = \int \chi^{*} \omega = \frac{1}{(d+i)!} \int \omega_{i_1 \cdots i_{d+i}} d\lambda^{i_1} \cdots d\lambda^{i_{d+i}}$ $= \int \chi^{*} \mathcal{P} , \quad \mathcal{R} \in \mathcal{N}^{d+2}(\mathcal{M}) .$ $\mathcal{D}^{d+2} \qquad \mathcal{R} = d\omega$ W need not be globally well-defined on M (it can be a "d-gerbe connection"), But SZ is a well-defined closed form. $\forall \lambda : S^{d+2} \rightarrow M.$ ∫ λ^{*} Σ ε 2πZ S^{d+2} $\left(\begin{bmatrix} \Lambda \\ 2\pi \end{bmatrix}\right)$ is "guantized on spherical Cycles".

7. WZW classes for families of Idlattice Systems (A. Kitaev, unpublished. L. Spodyneiko & AK, 2001.03454) $H(\lambda) = \sum_{p} H_{p}(\lambda), p \in \mathbb{Z}$ Ordinary Berry curvature: 12 $\mathcal{D}^{(2)} = \frac{i}{2} \oint \frac{dz}{2\pi i} \operatorname{Tr}\left(\frac{1}{2-H} dH \frac{1}{(2-H)^2} dH\right)$ d = exterior derivative on M $G(z) = \frac{1}{z-H}$ is a bounded operator if $z \notin spectrum of H$ But $\Omega^{(2)}$ is not well-defined: $\Omega^{(2)} = \sum_{\substack{p \in \Lambda \\ p \in \Lambda}} \Omega^{(2)} p_{\overline{p}} p_{\overline{p}}^{(2)}$ where $\mathcal{I}_{Pq}^{(2)} = \frac{i}{2} \oint \frac{dz}{2\pi i} Tr(G(z) dH_p G(z) dH_q)$

which infinite scens over $\Lambda = \mathbb{Z}$ are well-defined? Let <A;B> = <OIABIO> - <OIAIO><OIBIO> Th. (Hastings-Koma, Nachtergaele-Sims) $\langle A_{p}^{\circ}, B_{q}^{\circ} \rangle$ decays rapidly as $|p-q| \rightarrow \infty$. Let $G_0 = (I-P) + (I-P), P = IO)(0)$ Th (H. Watanabe) $\mathcal{J}_{pq}^{(2)} \sim \langle 0|dH_p G_o^2 dH_q | 0 \rangle - (p G_o q)$ Hence $\mathcal{D}_{pq}^{(2)}$ decays rapidly as 1P-21-00

 $\mathcal{R}^{(2)} = \sum_{\substack{p \in \mathcal{P}_{r} \\ p \in \mathcal{F}}} \mathcal{I}^{(2)}_{pq}$ is divergent, but $F_{q}^{(2)} = \frac{i}{2} \oint \frac{d^2}{2tri} Tr \left(G dH G^2 dH_{q} \right) =$ $= \sum_{p \in P} \mathcal{D}_{pq}^{(2)}$ is well-defined. It is not closed, but $dF_{q}^{(2)} = \sum_{p \neq p} F_{pq}^{(3)}$ 3-form ou M flere F⁽³⁾ is a which satisfies: • $f_{p_2}^{(3)} = -f_{gp}^{(3)}$
 F⁽³⁾_{pq} decoys rapidly as Ip-q]→∞.

an unilluminating explicit formula: $F_{PQ}^{(3)} = \frac{i}{6} \oint \frac{dz}{2tti} Tr \left(G^2 dH G dH_p G dH_q - \frac{1}{6} \int \frac{dz}{2tti} Tr \left(G^2 dH G dH_p G dH_q - \frac{1}{6} \int \frac{dz}{2tti} Tr \left(G^2 dH G dH_p G dH_q - \frac{1}{6} \int \frac{dz}{2tti} Tr \left(G^2 dH G dH_p G dH_q - \frac{1}{6} \int \frac{dz}{2tti} Tr \left(G^2 dH G dH_p G dH_q - \frac{1}{6} \int \frac{dz}{2tti} Tr \left(G^2 dH G dH_p G dH_q - \frac{1}{6} \int \frac{dz}{2tti} Tr \left(G^2 dH G dH_p G dH_q - \frac{1}{6} \int \frac{dz}{2tti} Tr \left(G^2 dH G dH_p G dH_q - \frac{1}{6} \int \frac{dz}{2tti} Tr \left(G^2 dH G dH_p G dH_q - \frac{1}{6} \int \frac{dz}{2tti} Tr \left(G^2 dH G dH_p G dH_q - \frac{1}{6} \int \frac{dz}{2tti} Tr \left(G^2 dH G dH_p G dH_q - \frac{1}{6} \int \frac{dz}{2tti} Tr \left(G^2 dH G dH_p G dH_q - \frac{1}{6} \int \frac{dz}{2tti} Tr \left(G^2 dH G dH_p G dH_q - \frac{1}{6} \int \frac{dz}{2tti} Tr \left(G^2 dH G dH_p G dH_q - \frac{1}{6} \int \frac{dz}{2tti} Tr \left(G^2 dH G dH_p G dH_q - \frac{1}{6} \int \frac{dz}{2tti} Tr \left(G^2 dH G dH_p G dH_q - \frac{1}{6} \int \frac{dz}{2tti} Tr \left(G^2 dH G dH_p G dH_q - \frac{1}{6} \int \frac{dz}{2tti} Tr \left(G^2 dH G dH_p G dH_q - \frac{1}{6} \int \frac{dz}{2tti} Tr \left(G^2 dH G H_q - \frac{1}{6} \int \frac{dz}{2tti} Tr \left(G^2 dH G H_q - \frac{1}{6} \int \frac{d$ $-GdHG^2dH_pGdH_q) - (p \rightarrow q)$ The equation $dF_{q}^{(2)} = \sum_{p \neq p} F_{pq}^{(3)}$ was first observed by Kitaev for classical lattice systems. $dF_{qr}^{(3)} = \sum_{p \in \Lambda} F_{pqr}^{(u)}$ for some 4-form $F_{pqr}^{(u)} = F_{pqr}^{(u)}$ for some 4-form $F_{pqr}^{(u)}$ which is · completely anti-symmetric in P, 8, r. · decuys rapidly away from p=q=r nou we can construct the WZW 3-form as follows.

Let $f: \mathbb{Z} \rightarrow \mathbb{R}$ be a function such that f(p)=1 for p>>0. f(p) = 0 for $p \leq 0$ Let $\Sigma^{(3)}(f) = \frac{1}{2} \sum_{\substack{P,q \\ P,q}} F^{(3)}_{pq}(f(q) - f(p)),$ • $\mathcal{N}^{(3)}(f)$ is well-defined, • $d \mathcal{N}^{(3)}(f) = O$ (follows from the formula for $dF^{(3)}$) • $\mathfrak{N}^{(3)}(f) - \mathfrak{N}^{(b)}(f') = d(...)$ (follows from $dF_{q}^{(2)} = \sum_{p} F_{p_{q}}^{(3)}$) [s(3)(f)] is the desired WZW class (up to a normalization factor).

Remark

• lf f is constant except near p=Po, [S⁽³⁾] is sensitive only to the state of the system near p=Po ("Local competability") · [I13] does not depend on po. a paradox? boundary $\langle \rangle$ a nou-trivial a trivial family (H(X) Hamiltoman H(Xo) Resolution: if $[\mathcal{N}^{(3)}] \neq 0$, the family H(x) cannot have a gapped interface with H(20). Similar to Hall conductance !

8. Interlude: the coarse chain complex. $F_{p}^{(2)}$, $F_{pq}^{(3)}$, $F_{pqr}^{(4)}$, are cramples of chains in a certain chain complex. Let $\Lambda \subset \mathbb{R}^d$ be a countable uniformly discrete subset. (i.e. inf $\mathbb{P}-\mathbb{P}\mathbb{P}>0$). $\mathbb{P}.\mathbb{P}\mathbb{P}\mathbb{P}$ Def. a subset DCAX...XA is called controlled if JS>0 s.t. 1pi-Pi) LO $\forall i, j \forall (p_1, \dots, p_n) \in D$ Det A coarse n-chain with values in a vector space V is a function $A: \Lambda \times ... \times \Lambda \rightarrow V$ which is nfl times · sheer-symmetric · supported on a controlled subset.

Let Cn(N;V) be the space of V-valued n-chains, n=0,1,2,... The map $\Im: C_n(\Lambda; V) \rightarrow C_{n-r}(\Lambda; V)$ is defined as $(\partial A)_{P_1 \cdots P_n} = \sum_{P_0} A_{P_0 P_1 \cdots P_n}$ $\partial^2 = 0 \Rightarrow (C.(\Lambda; V))$ is a chain complex. Its homology $H_{\bullet}(\Lambda; V)$ is called the coarse homology of $\Lambda \subset \mathbb{R}^d$. <u>Th</u>. If Λ is uniformly filling (i.e. $\exists R > 0$ s.t. $dist(r, \Lambda) \leq R \forall x \in R$) then $H_{n}(\Lambda; V) = H_{n}^{BM}(\mathbb{R}^{d}, V) = \begin{cases} V, & i \neq n = d \\ O, & i \neq n \neq d \end{cases}$